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Using a lattice string model, a number of peculiar excitation situations related to nonpropagating excitations
and nonradiating sources are demonstrated. External fields can be used to trap excitations locally but also lead
to the ability to steer such excitations dynamically as long as the steering is slower than the field’s wave
propagation. I present explicit constructions of a number of examples, including temporally limited nonpropa-
gating excitations, directional excitation and virtually slowed propagation. Using these dynamical lattice con-
structions I demonstrate that neither persistent temporal oscillation nor static localization are necessary for
nonpropagating excitations to occur.
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I. INTRODUCTION

Can a local excitation(source) in classical field theories
be invisible to observers outside the region of excitation?
This question has recently received renewed interest.

Berry et al. [1] described a peculiar excitation case for the
one-dimensional wave-equation of a perfectly elastic string
under tension. They show that the response of the string can
be made to be confined to a bounded region by carefully
choosing a forced excitation of oscillatory type. This means
that the excitation will not propagate away along the string.
Denardo gives a simple and intuitive explanation by using a
wave interference argument[2]. Gbur, Foley, and Wolf[3]
discuss conditions of finite string length and dissipation.

Other recent work investigated nonpropagating excita-
tions include Marengo and Ziolkowski[4–6] who discuss the
generalization of nonpropagating conditions of

D’Alembertian sh =
def

¹2−c−2]2/]t2d operators and its tempo-
rally reduced version the Helmholtz operators¹2+k2d on
various related classical scalar and vector fields. Marengo,
Devaney and Ziolkowski[7] give the condition for time-
dependent but not necessarily time-harmonic nonradiating
sources and for selective directional radiation for the inho-
mogeneous wave equation in three spatial dimensions.
Marengo and Ziolkowski[8] generalize these conditions to
more general scalar and vector field dynamics. Marengo, De-
vaney, and Ziolkowski[9] also give examples in one and
three spatial dimension for the time-harmonic case. Hoend-
ers and Ferwerda[10] discuss the relationship of nonradiat-
ing and radiating parts of the case of the reduced Helmholtz
equation, which can be derived from the string equation by
assuming general oscillatory time solutions(see Ref.[1]).
Denardo and Miller[11] discuss the related case of leakage
from an imperfect nonpropagating excitation on a string.
Gbur [12] provides a comprehensive recent review of this
topic and the reader is referred to this review for more de-
tailed historical context. Of the earlier work the following

contributions are particularly relevent for the discussion
here: Schott[13,14] gave the condition for nonradiation of a
spherical shell on a circular orbit. Bohm and Weinstein[15]
extended this result to more general spherical charge distri-
butions and Goedecke[16] showed how an asymmetrical
charge distribution with spin is nonradiating. All of these
works are concerned with the case of spatially moving
sources. Finally, it is worth noting that nonradiating sources
play an important role in inverse problems and have been
investigated in a one-dimensional electrodynamic situation
by Habashy, Chow, and Dudley[17].

In this paper our purpose is to describe this phenomena in
the case of a lattice string in one dimensions by discretizing
D’Alembert’s solution. This approach is used extensively to
simulate vibrating strings and air tubes of musical instru-
ments. See Ref.[18] and references therein.

This leads to explicit dynamical constructions of previ-
ously reported nonpropagating excitations. Its simplicity al-
lows for additional insight into the mechanism that allows
for the local confinements and the conditions under which
they occur. I will show how the basic mechanisms that pro-
vide a time-harmonic stationary nonpropagating excitation in
one dimension as studied by Berryet al. and Gbur, Foley,
and Wolf [1,3] allows for a much wider class of excitations.
For instance, can such an excitation be relieved from the
time-harmonic assumption beyond one period allowing for
nonpropagating sources that are short lived. Directional ex-
citations can easily be achieved using very simple bidirec-
tional excitation patterns. These are explicit constructions of
such waves in one spatial dimension whose general condi-
tion of existence in the three-dimensional case has been de-
rived by Marengo, Devaney and Ziolkowski[7]. Wave
propagation can be virtually slowed down. In general I will
show that nonpropagating excitations can be extended to
steered excitation regions with basic physical restrictions im-
posed by the underlying field dynamics.

First I will give a quick derivation of the simple lattice
model from the wave equation as can also be found in Ref.
[18]. Then I will give an argument and construction of the
Berry et al., type-nonpropagating excitation purely based on
discrete string dynamics. This will then be compared to the*Electronic address: georg@mle.media.mit.edu
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original approach. Then I will extend the discussion to ex-
amples of additional types of nonpropagating waves, includ-
ing directional and slowed waves. Finally, I will discuss very
general constraints on such “steered” localized excitations.

II. LATTICE STRING MODEL

The lattice string model can easily be derived from the
wave equation by discretizing the D’Alembert solution.
Hence the continuous case will be discussed first.

A. Continuous wave solutions

The one-dimensional homogeneous wave equation of the
perfectly elastic string under tension is

m
]2y

] t2
− K

]2y

] x2 = 0, s1d

wherec2=K /m is derived from mass densitym and tension
K. The D’Alembert solution of the homogeneous “free field”
case has the well known form[19, p. 596, Eq.(4)]

ysx,td = w+sx − ctd + w−sx + ctd. s2d

Hence the solution of the general of the homogeneous
wave equation are two propagating waves whose content is
restricted by initial and boundary conditions. As wave equa-
tion is linear we have a connection between initial conditions
and external driving forces. Driving forces can be seen as
infinitesimal time frames that act on the wave dynamics by
imposing an initial condition at each point in time. Hence we
need to consider the initial value problem to gain insight into
both processes at once.

At a give time frameti let the following initial conditions
hold:

ysx,tid = fsx,tid, s3d

ytsx,tid = gsx,tid. s4d

Equation(3) with Eq. (2) gives a particular solutiony+

y+sx − ctid + y−sx + ctid = fsx,tid. s5d

Taking the first temporal derivative of Eq.(2) and satis-
fying Eq. (4) we get

− cyt
+sx − ctid + cyt

−sx + ctid = gsx,tid. s6d

Integrating with respect tox we get[19, Eq.(10) p. 596]

− cy+sx − ctid + cy−sx + ctid = ksx0d +E
x0

x

gssdds,ksx0d =

− cy+sx0d + cy−sx0d. s7d

From Eqs.(5) and (7) we can solve for the traveling wave
components

y+sx − ctid = 1
2 fsx,tid −

1

2c
E

x0

x−cti
gssdds− 1

2ksx0d, s8d

y−sx + ctid = 1
2 fsx,tid +

1

2c
E

x0

x+cti
gssdds+ 1

2ksx0d. s9d

We see that forced displacementfs·d splits evenly be-
tween left and right traveling waves and the integrated forced
velocity gs·d splits with a sign inversion.

For our current discussion I will share the assumption of
no initial velocity of Berryet al. [1] and hence the integral
over gs·d will vanish.

For the infinite string this is already the complete solution
for any twice differentiable function of free solutions and
external forced displacements.

B. Discrete wave solutions

To arrive at lattice equations we discretize the solution of
the wave Eq.(2) in time via the substitutiont→Tn whereT
is the discrete time-step andn is the discrete time index. This
automatically corresponds to a discretization in space as
well, because in finite timeT a wave will travelX=cT dis-
tance according to Eq.(2). The spatial index will be called
m. The free-field discrete D’Alembert solution

ysmX,nTd = w+smX− cnTd + w−smX+ cnTd. s10d

In general, we can always express all discrete equations in
terms of finite time steps or finite spatial lengths. We chose a
temporal expression and substituteX=cT and suppress
shared terms incT to arrive at the index version of the dis-
crete D’Alembert solution[18]

ysm,nd = w+sm− nd + w−sm+ nd. s11d

By Eqs. (8) and (9) we see that at an instancemi, ni the
discrete contribution of external forced displacements splits
evenly between the traveling waves and we arrive at the
discrete field equations including external forced displace-
ments

W+smi − nid = w+smi − nid + 1
2 fsmi,nid, s12d

W−smi − nid = w−smi − nid + 1
2 fsmi,nid. s13d

III. NONPROPAGATING EXCITATION

Next we will construct the nonpropagating excitation
from the lattice string dynamics directly.

For simplicity and without loss of generality, we will as-
sume a region aligning with the discretization domain
throughout. We want to construct an excitation which is con-
fined to a length −LøxøL. For now we will assume that the
string should otherwise stay at rest. This implies that there
are no incoming waves into the regionV=f−L ,Lg from the
outside. We are interested in a nontrivial excitation within
the region.

First we consider the contributions to the position −L. As
there are no incoming external waves we get

w+s− L + nd = 0. s14d
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We do expect nontrivial wavew−s−L−nd to reach the
boundary but we require the total outgoing wave to vanish
we have

W−s− L − nd = w−s− L − nd + 1
2 fs− L,nd = 0. s15d

The necessary external forced displacement contribution
for cancellation needs to be

1
2 fs− L,nd = − w−s− L − nd. s16d

The complete incoming wave(12) will see the same
forced contribution(16) and with Eq.(14) we get

W+s− L + nd = 1
2 fs− L,nd = − w−s− L − nd. s17d

Hence, the matched forced displacement leads to a reflec-
tion with sign inversion at the region boundary at −L.

Following the same line of argument at pointL we get the
related condition

W−sL − nd = 1
2 fsL,nd = − w+sL + nd. s18d

With these two conditions we can study the permissible
form of excitations. First we assume an initial forced dis-
placement impulse from a positionp in the interior of the
domain V \]V=s−L ,Ld. Hence −L,p,L and fsp,0d=ap

with apPR.
It will take half the impulseL+p steps to reach the left

boundary and the other halfL−p steps to reach the right one.
At each boundary the respective condition(17) and (18)

needs to be satisfied and we get

fs− L,L + pd = − fsp,0d, s19d

fsL,L − pd = − fsp,0d. s20d

The impulse will then reflect back and create periodic
matching conditions

fs− L,L + p + 4Lvd = fsp,0d, s21d

f„− L,L − p + s2v − 1d2L… = − fsp,0d, s22d

fsL,L − p + 4Lvd = fsp,0d, s23d

f„L,L + p + s2v − 1d2L… = − fsp,0d s24d

with v=1,2, . . . .
Hence we see that a single impulse will necessitate an

infinite periodic series of forced external displacements at the
boundaries to trap the impulse inside as each “annihilation”
of a half- pulse reaching the boundary leads to a “creation”
of a reflected one.

The required impulse response of a boundary forced func-
tion fs±L , ·d can easily be observed from Eqs.(21)–(24) to be
spatially periodic in 4L with an initial phase factor dictated
by the starting positionp. Additionally the functional shape
of the impulse responsesfs±L , ·d is completely defined for all
time steps asfs±L , ·d=0 for all times that Eqs.(21)–(24) do
not apply.

A condition for stopping a nonpropagating excitation can
be derived from the fact that an impulse will return to its
initial position every 4L time steps. Additionally it is easy to
see that the traveling impulses will occupy the same spatial
position every odd multiple of 2L with a sign inversion.
Hence an impulsive forced displacementf(s−1dm−1p,4Lmd
=s−1)m−1ap with m=1,2, . . . will cancel an initial impulse
fsp,0d=ap. From this we can immediately deduce the fol-
lowing property:

Theorem 1. The shortest possible single impulse finite
nonpropagating excitation takes2L time steps.

and more generally:
Theorem 2. The time of any single impulse excitation

finite nonpropagating excitation has to be2mL ,mPN.
More importantly, we observe the property:Nonpropagat-

ing excitations can be finite in duration.
This is an extension beyond Berryet al. [1] which as-

sumes infinitely periodic temporal progressions in their deri-
vations.

The general solution for discrete nonpropagating wave
functions can be derived by observing that any initial
“phase” pi is orthogonal to other phasespj for i , j PV \]V
=s−L ,Ld, i.e., kfspi ,0d , fspj ,0dl=0 for i Þ j . Within a 2L pe-
riod fs±L , ·d is well defined by oi fspi , ·d. Interestingly,
though, this provides the only restriction to the forced
boundary functions. This can be seen by Theorem 1. After
2L each pi will find constructive interference and can be
annihilated or rescaled to an arbitrary other valueais2Ld.
Hence any arbitrary succession of 2L−2 force distributions
with a 2L termination is permissible. Hence periodicity is not
necessary.

The time harmonic case can be derived if the initial force
distribution within the domain is not modified over time.
Then a configuration will repeat after traveling left and right,
being reflected at the domain boundary twice, traversing the
length of the region twice. Hence the lowest permissible
wavelength is 4L. By reflecting twice the wave will have
gone through a 2p phase shift, but we note that the period-
icity condition is also satisfied if any number of additional
2p shifts have been accumulated. Hence we get for permis-
sible wave numbers

k =
2pn

4L
, where n = 1,2, . . . s25d

or

kL =
np

2
. s26d

By allowing only evenn we get the Berryet al.condition[1]
for an even square distribution. The oddn situation corre-
sponds to the odd-harmonic out-of-phase construction pro-
posed by Denardo[2].

Many of these properties can be seen visually in the nu-
merical simulation depicted in Fig. 1.

It is interesting to observe that two synchronous point
sources oscillating with the above phase condition will not
be completely nonpropagating. They will only be nonpropa-
gating after waves created at the wave onset have escaped.
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This is a refinement of the argument put forward by Denardo
[2] and can intuitively be described asnoninterference of the
first trap period. Hence the first pairs of pulses will have
half-amplitude components escaping in either direction but
every subsequent period will be trapped. This behavior,
which could be called imperfect trapping or trapping with
transient radiation, is depicted in Fig. 2. Sources presented
by Berry et al. and Denardo[1,2] do not display this behav-
ior because the force is assumed to be oscillatory at all times
and hence has no onset moment.

Nonpropagating excitations can be used as generic build-
ing blocks for other unusual excitation induced behavior on
the string. In particular, I will next describe how to construct
a uni-directional emitter, and a virtually slowed propagation.
In fact, a nonpropagating excitation can be seen as virtually
stopping a wave at a particular position.

IV. DIRECTIONAL EXCITATIONS

A one-sided open trap immediately suggests another un-
usual excitation type, namely the directional excitation. The

string is to be excited in such a way that a traveling wave in
only one direction results.

We start with a one-sided open trap. This is a trap that
uses a reflection conditions,(17) and(18) only on one side of
an initial excitation. Evidently the wave then can only travel
in the opposite direction. For the discussion we will describe
a right-sided propagator(i.e., a propagator traveling with in-
creasing negative index). The trapping condition then reads

fsm+ 1 + p,n + pd = − fsm,n − 1d. s27d

Hence the trapping excitation point is ap time-step lagging
negative copy of the original excitation. The emitted wave
will have the form

1
2 fsm+ 1,n + 2pd − 1

2 fsm+ 1,nd. s28d

The emitting wave will show self-interference at a phase of
2p time steps, as can be seen in the simulation depicted in
Fig. 3. In general, the self-interference phase can be chosen
by the distancep between the wave creation point and the
trapping point. It is worth noting that it is possible to elimi-
nate interference by trapping the lagging contribution and
hence create a noninterference directional wave left of the
trapping region.

V. VIRTUAL SLOW WAVES

Virtual slow waves can be achieved by alternating direc-
tional wave propagation with trapping. The slowness of the
wave propagation can be controlled by the number and du-
ration times of the traps along a propagation. The propaga-
tion characteristics of the dynamic operator have not
changed at all, hence we call this state “virtually slow” as
opposed to the case where the field itself induces a change in
wave propagation speed. This also means that within a
slowed or “steered” region the wave propagation is the one
prescribed by the dynamic operators] /]x+cs] /]tdds] /]x
−cs] /]tdd on the stringysx,td.

The amount of time spent in traps determines the overall
slowness. One example of slow wave consists of an imme-

FIG. 1. Simulation of a nonpropagating excitation of width 3
which is annihilated after 3.5 periods. The total temporal length of
the excitation is 10. The excitation leaves the string at rest after it is
completed. Top: Complete wave pattern. Bottom: Excitation only.

FIG. 2. Simulation of a nonpropagating excitation of width 3
showing escaping waves at the onset transient. Top: Complete wave
pattern. Bottom: Excitation only.

FIG. 3. Simulation of a directional excitation of width 3. The
deflected component experienced a sign inversion. The temporal
length of the excitation sequence is two, including the initial im-
pulse. Top: Complete wave. Bottom: Excitations only.
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diate alteration between one stage of trapping and one step of
one-sided propagation illustrated in Fig. 4. The effective
propagation speed of the wave can easily be read from the
diagram to giveceff=csX/3Td=c/3. As is evident from
Theorem 1, a unitL=1 trap will last two time steps and will
not propagate spatially and one step of free propagation will
last one time step and and make one spatial step, hence re-
sulting in a spatial to temporal ratio of 1:3.

The trapping relations are

fsm− 2 −v,n + 1 + 6vd = fsm+ 1 −v,n + 6vd = − fsm,n − 1d,

s29d

fsm− 3 −v,n + 4 + 6vd = fsm− v,n + 3 + 6vd = fsm,n − 1d
s30d

with v=0,2,4, . . . .

VI. STEERING

The generalized interpretation of the excitation interaction
lead to the general dynamical confinement of waves by ex-
ternal excitation. For instance, following very similar argu-
ments as for virtual slow waves a construction is possible
which gives a slowed “cone of influence” by successively
widening the trap boundaries at a speed slower than the wave
speedc. By this argument it is sufficient for the trap bound-
aries’ change to be less thanc for it to be trapping the wave.
This is not a necessary condition by the following counter
example: Let the trap width beL and change rapidly by some
slopedL.c to some new constant widthL2 at which it be-
comes constant. Obviously the wave will then be able to
reach the new boundary even though a local change of the
boundary exceeded the dynamical speedc. The necessary
condition can be seen from our previous construction. At a
trap boundary a wave is reflected and will propagate in the
opposite direction of the domain following the linear charac-
teristic c. Only if this characteristic intersects with the dy-
namic trapping boundary will there be another externally
forced reflection as illustrated in Fig. 5. These may in fact

have regions where no trapping is necessary and possible.

VII. INTERACTION WITH BACKGROUND FIELDS

It is important to note that while we assumed that the
incoming wave vanishes, see Eq.(14), the outgoing wave
condition(15) does not change if there is, in fact, an incom-
ing wave. The “reflection wave”(17) and(18) can be rewrit-
ten for a nonzero incoming field without affecting the trap-
ping

W+s− L + nd = w+s− L + nd + 1
2 fs− L,nd,

1
2 fs− L,nd = − w−s− L − nd s31d

and

W−sL − nd = w−sL − nd + 1
2 fsL,nd,

1
2 fsL,nd = − w+sL − nd. s32d

These conditions are “absorbing” in the sense that an ex-
ternal field entering the trapping region will not leave it.

The “noninteracting” property of a trap defined by the
periodic matching conditions(21)–(24) can be seen by as-
suming a nonzero incoming wave at one point of the trap
boundarydV. Then the total wave entering the trapping re-
gion, the sum of the wave created by the trapping condition,
and the incoming wave value12 fsdV1, ·d+w±sdV1, ·d, where
dV1 denotes the first trap boundary reached. When reaching
the second trapping boundarydV2 the now outgoing wave
will see a matching forcefsdV2, ·d=−1

2 fsdV1, ·d leaving an
outgoing wave contributionw±sdV2, ·d=w±sdV1, ·d to escape
the trapping regionV.

In order to achieve selective radiation, only part of the
content of a trapped region is trapped at the boundary as can
be achieved by using a reduced force at the trapping bound-
ary or by selectively omitting certain phases in the trapping
force pattern.

Relationship of traps to nonradiating sources

Marengo and Ziolkowski[4] present ideas very much re-
lated to ideas presented here and in Berryet al. [1]

However, they arrive at a definition of nonradiating(NR)
sources that is not obviously similar to the traps presented
here. In particular, they define NR sources as being noninter-

FIG. 4. Simulation of a finite-duration virtual slow wave exci-
tation of width 3. The wave is annihilated after ten steps. Top:
Complete wave. Bottom: Excitation only.

FIG. 5. A grazing propagating wave against a changing trap
boundary can create regions(gray) in which no trap affect applies.
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acting. While Ref.[4] notes that a central property of NR
sources is that they store nontrivial field energy, traps de-
scribed here cannot only store, but accumulate and selec-
tively radiate waves.

The difference can be understood by observing that, for
example, Berryet at. assume a simple time-harmonic driver
[see Eq.(3) of Ref. [1]] throughout their discussion:

fsx,td = Rehfsxde−ivtj. s33d

By our earlier discussion we see that the temporal pro-
gression of the boundary has to match the content of the
interior domain. Hence once the boundary is defined to be
oscillatory the interior of the domain needs to be spatially
harmonic as derived in[1,4] and has been re-derived here.
Hence a NR source as noted in literature, with the exception
of the general orthogonality formulation for time-varying
sources given by Marengo, Devaney, and Ziolkowski[7],
can be thought of as a time-oscillatory trap.

The arguments made here use a formalism that is discrete
in nature. However, the discreteness of the arguments is not
necessarily restrictive. The continuous case can be imagined
with the discrete time step made smallsT→0d or, alterna-
tively, discrete pulses can be substituted with narrow distri-
butions of compact support. In neither case are the results of
interest derived here altered.

As has already been derived in Refs.[1,3] the critical
condition for nonpropagating waves lies at the boundary of
the domain range that the wave ought not to leave. In the
discrete case it is easy to see how this insight can be used

and generalized. In fact, the boundaries of the confining do-
main need not be static, nor need the condition be used in a
two-sided fashion.

VIII. CONCLUSION

In summary, this paper presented constructions of a broad
class of nonpropagating sources on a string lattice model
using trapping conditions. In particular, this includes numeri-
cal demonstrations of finite-duration nonpropagating excita-
tions, directional excitations, as well as virtually slowed
waves. These examples help explain the extension of non-
propagating sources beyond the time-periodic case and in-
clude treatment of onset, annihilation and spatial steering.
These properties ought to be observable in experiments well
described by the wave equation. This equation often arises in
problems in acoustics, elasticity, optics, and electromagne-
tism. And hence the results presented here apply to these
domains of application. While here I discussed the forward
problem, these results also relate to the inverse problem of
finding source contributions from the one-dimensional field
state as occur, for example, in acoustical, optical, and elec-
tromagnetic detection problems.
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